TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPARγ2
نویسندگان
چکیده
TonEBP is a key transcription factor in cellular adaptation to hypertonic stress, and also in macrophage activation. Since TonEBP is involved in inflammatory diseases such as rheumatoid arthritis and atherosclerosis, we asked whether TonEBP played a role in adipogenesis and insulin resistance. Here we report that TonEBP suppresses adipogenesis and insulin signaling by inhibiting expression of the key transcription factor PPARγ2. TonEBP binds to the PPARγ2 promoter and blocks the epigenetic transition of the locus which is required for the activation of the promoter. When TonEBP expression is reduced, the epigenetic transition and PPARγ2 expression are markedly increased leading to enhanced adipogenesis and insulin response while inflammation is reduced. Thus, TonEBP is an independent determinant of adipose insulin sensitivity and inflammation. TonEBP is an attractive therapeutic target for insulin resistance in lieu of PPARγ agonists.
منابع مشابه
TonEBP suppresses adipocyte differentiation via modulation of early signaling in 3T3-L1 cells
TonEBP belongs to the Rel family of transcription factors and plays important roles in inflammation as well as kidney homeostasis. Recent studies suggest that TonEBP expression is also involved in differentiation of several cell types such as myocytes, chondrocytes, and osteocytes. In this study, we investigated the roles of TonEBP during adipocyte differentiation in 3T3-L1 cells. TonEBP mRNA a...
متن کاملβ-Catenin Directly Sequesters Adipocytic and Insulin Sensitizing Activities but Not Osteoblastic Activity of PPARγ2 in Marrow Mesenchymal Stem Cells
Lineage allocation of the marrow mesenchymal stem cells (MSCs) to osteoblasts and adipocytes is dependent on both Wnt signaling and PPARγ2 activity. Activation of PPARγ2, an essential regulator of energy metabolism and insulin sensitivity, stimulates adipocyte and suppresses osteoblast differentiation and bone formation, and correlates with decreased bone mass and increased fracture rate. In co...
متن کاملEvaluating the effect of arachidonic acid and eicosapentaenoic acid on induction of adipogenesis in human adipose-derived stem cells
Objective(s): Adipose tissue is one of the most important endocrine organs that liberates many metabolic mediators such as hormones, cytokines, and chemokines. Different types of fatty acids have key roles in adipogenesis. The aim of this study was to evaluate the effects of two essential fatty acids, including Arachidonic acid (AA) and Eicosapentaenoic acid (EPA), on ...
متن کاملInhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation
Adipocytes are the primary cells in adipose tissue, and adipocyte dysfunction causes lipodystrophy, obesity and diabetes. The dipeptidyl peptidase (DPP) 4 family includes four enzymes, DPP4, DPP8, DPP9 and fibroblast activation protein (FAP). DPP4 family inhibitors have been used for the treatment of type 2 diabetes patients, but their role in adipocyte formation are poorly understood. Here we ...
متن کاملThioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness
Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1(-/-)) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015